
OpenGL:
Advanced 3D

Session 513

OpenGL:
Advanced 3D

Geoff Stahl
Apple OpenGL

Simon Green
NVIDIA

Overview
•What’s new with Jaguar?
•Wolfman Walkthrough
•Q&A

New Features
•Optimizations

• glReadPixels
• glCopyTexSubImage
• glDrawPixels
• Display Lists
• Image Processing
• Vertex Arrays

•Surface to Texture
•Extensions

• 64 extensions supported
• 30 new extensions

Programmability
• ARB_vertex_program

• Adds vertex programming functionality to all
software and hardware implementations

• Support in hardware for ATI Radeon 8500,
NVIDIA GeForce 3 and GeForce 4 Ti

• All other hardware supported via an
optimized software implementation

• NV_texture_shader, NV_texture_shader2,
 NV_texture_shader3

• ATI_fragment_program

Vertex Array
• APPLE_vertex_array_range

• Allows GPU to DMA vertex arrays
• Supported by ATI Radeon, ATI Radeon 8500,
all NVIDIA. Requires hardware TCL

• APPLE_vertex_array_object
• Allows vertex array state such as data pointers
and vertex array range information, similar
to how textures are handled

• Supported by ATI Radeon, ATI Radeon 8500,
all NVIDIA

Performance
• APPLE_texture_range

• Allows texture storage hints and specification
of memory range for texture data

• Supported by ATI Radeon, ATI Radeon 8500,
all NVIDIA

• APPLE_fence
• Puts a fence (or token) in command stream
to allow synchronization

• All renderers supported

Texture Extensions
• ARB_texture_mirrored_repeat

• ARB_texture_env_crossbar
• ATI_texture_mirror_once

• SGIX_depth_texture
• SGIX_shadow

Rendering Extensions
• ARB_multisample

• EXT_secondary_color
• EXT_fog_coord
• EXT_draw_range_elements

• EXT_stencil_wrap
• NV_fog_distance
• NV_multisample_filter_hint

• NV_depth_clamp

Others
•Pixel Transfer

• ARB_imaging,
 ATI_blend_equation_separate,
 ATI_blend_weighted_minmax,
 NV_blend_square

•Point Parameters
• ARB_point_parameters, NV_point_sprite

Anatomy
of the
Wolfman

Advanced Fur Rendering Using
OpenGL Programmable Shading

Simon Green, NVIDIA

NVIDIA Demo Team Unofficial Motto

“We Make The Marketing Lies Come True”

Overview
•Wolfman—one of four GeForce 4 launch demos
•Created to showcase the performance and
programmability of GeForce 4

•Demonstrates volumetric fur rendering on a fully
animated character model

•Animated using vertex shaders
•Per-pixel anisotropic lighting using pixel shaders
•Self-shadowing using shadows maps
•Runs using OpenGL with NVIDIA extensions
•How did we do it?

Why Fur?
•Lots of things in the real world are fuzzy
•Rendering fur is hard
•Fur is something people hadn’t seen
before in real time

Rendering Fur
•Two basic methods to render fur

• Geometric
• Each individual hair strand is a curve (lines)

• Volumetric
• Fur is represented using volume texture (images)

•Hardware can’t render 3 million individual hairs
per frame (yet)

•So we use the second method

A Brief History of Fur Rendering
Rendering Fur With Three Dimensional Textures

Kajiya and Kay, Siggraph 1989
•Represented fur density using 3D volume
texture —“texels”

•Lit hairs based on tangent direction
•Furry teddy bear image
•Rendered on network of IBM mainframes

• 16 processors
•2 hours for one frame

A Brief History of Fur Rendering
Real-Time Fur Over Arbitrary Surfaces

Jed Lengyel, Microsoft Research 2001
•Introduced concept of “shell and fin” rendering
•Concentric shells approximate volume
•“Fins” improve silhouette edges
•Used “lapped textures” to cover surface
•Furry bunny rabbit
•5000 faces
•Ran at 12 frames per second on GeForce DDR

Demo Concept
•Teddy Bears and Bunnies aren’t our style, so…

Demo
NVIDIA Wolfman

Wolfman Demo Statistics
•100,000 polygons/frame
•Runs at around 30 frames/second

Rendering Fur
With Shells and Fins
•Generate concentric “shells’ by scaling base skin
mesh along vertex normal

•Each shell is textured with a different 2D texture
that represents a slice of the fur geometry

•The layers are blended together to produce
the illusion of a semi-transparent furry volume

•Lower layers are shaded darker to simulate
self-shadowing of fur

•We used 8 layers

Fur Design Tool

Fur Design Tool
•Custom in-house tool
•Provides simple UI for designing fur textures
•Fur geometry is defined using a particle system
based on spherical coordinates

•Previews hairs using line strips
•Allows direction, curliness to be tweaked
using sliders

•Once you’re happy, it renders (e.g., voxelizes)
the geometry into a volume texture

•Writes out texture files to disk

Fur Textures
•We used 256 x 256 pixel fur textures, tiled over
each surface

•Alpha component of texture represents
density of fur

•RGB components represent tangent vector
used for lighting

Fur Without Color Map

Fur Color Texture

Fur With Color and Lighting

Rendering Fur
With Shells and Fins
•Problem: fur using shells looks good, except
on the silhouette

•Solution: add “fin” geometry to improve the edges
•Fins are generated by creating a quadrangle for
each edge in the base mesh

•Textured with a separate image
•Fins are faded out based on the angle between the
normal and the view direction, so that they only
appear on the silhouette

Fin Texture
•Hand painted, represents arbitrary cross section
through fur:

Modeling and Animation
•Modeled in Maya as NURB surfaces
•Converted to polygons
•Base mesh has around 20,000 polygons total
•Skeleton has 61 bones

• Including all fingers and thumbs!
•Comparable to complexity used in film and
television production

•925 frames of key-framed animation @ 30fps

Wolfman in Maya 4.0

NVDemo—The NVIDIA Demo Engine

•Proprietary NVIDIA demo engine
•Used for most of NVIDIA’s in-house demos
•Object-oriented scene graph library
•Takes care of scene management, culling, sorting
•Includes Maya plug-in to convert geometry,
materials, lights and animation to our own
custom file format

Vertex Shaders
•Allow total control over hardware vertex
processing using assembly language interface

•Exposed in OpenGL as ARB_vertex_program
extension

•Used in Wolfman demo for:
• Skinned animation
• Scaling fur layers along vertex normal
• Setup for per-pixel lighting
• Texture coordinate generation for
shadow mapping

Vertex Program Extract
// Load the index

ARL A0.x, v[V_INDEX].x;

// transform vertex by bone

DP4 R0.x, c[A0.x + C_BONE0_X], v[V_COORD];

DP4 R0.y, c[A0.x + C_BONE0_Y], v[V_COORD];

DP4 R0.z, c[A0.x + C_BONE0_Z], v[V_COORD];

// multiply by weight

MUL Rv.xyz, R0, v[V_WEIGHT].x;

// transform normal by bone

DP3 R0.x, c[A0.x + C_BONE0_X], v[V_NORMAL];

DP3 R0.y, c[A0.x + C_BONE0_Y], v[V_NORMAL];

DP3 R0.z, c[A0.x + C_BONE0_Z], v[V_NORMAL];

// multiply by weight

MUL Rn.xyz, R0, v[V_WEIGHT].x;

// repeat for each bone, plus binormals

Vertex Program Extract
// scale vertex along normal

MAD Rv.xyz, Rn, c[C_FUR_SHELL_SCALE].x, Rv;

// project vertex

DP4 o[HPOS].x, c[C_PROJECTION_X], Rv;

DP4 o[HPOS].y, c[C_PROJECTION_Y], Rv;

DP4 o[HPOS].z, c[C_PROJECTION_Z], Rv;

DP4 o[HPOS].w, c[C_PROJECTION_W], Rv;

// fur lighting

// calculate eye space view vector

DP3 Re.w, Rv, Rv;

RSQ Re.w, Re.w;

MUL Re.xyz, Rv, Re.w;

Vertex Program Extract
// calculate eye space half-angle vector

ADD Rh, -Re, c[C_LIGHT0_DIRECTION];

DP3 Rh.w, Rh, Rh;

RSQ Rh.w, Rh.w;

MUL Rh.xyz, Rh, Rh.w;

// transform half-angle into tangent space

DP3 R0.x, -Rt, Rh;

DP3 R0.y, -Rb, Rh;

DP3 R0.z, Rn, Rh;

// map H into [0,1] and put into secondary color

MAD o[COL1].xyz, R0, c[C_CONSTANTS].y, c[C_CONSTANTS].y;

// put fur diffuse lighting with attenuation into primary color

DP3 R0, Rn, c[C_LIGHT0_DIRECTION];

MUL o[COL0].xyz, c[C_FUR_SHELL_SCALE].y, R0;

Skinning
•We want a smooth skin that covers the character and
deforms as it animates

•Storing all the vertices for each key frame would be
expensive

•Instead we animate a hierarchical skeleton, and use that
to deform the skin

•Transform each vertex by multiple transformations—one
for each of the nearby bones

•Final vertex position is a weighted average of the results
of each of these transformations

•Weights are stored with each vertex
•Debugging skinning code can be fun…

Pixel Shaders
•Allow precise control over per-pixel operations
•Exposed in OpenGL as NV_texture_shader
and NV_register_combiners extensions

•Used in Wolfman demo for:
• Bump mapping (street and Wolfman’s skin)
• Anisotropic lighting model on fur
• Shadows

Shadows
•Everything in the demo is shadowed using
shadow maps

•Shadow maps are a two pass image-space technique
•Exposed via GL_ARB_shadow extension
•Advantages

• Performance is linear with complexity of scene
• Easy to implement

•Disadvantages
• Aliasing
• Shadow bias

Shadow Map Algorithm
•Render scene from light’s point of view
•Copy depth information to “shadow map” texture
•Project shadow map texture back onto scene
•For each pixel, hardware compares depth in
shadow map with depth of pixel:

• If it’s less, there must be something between
us and the light shadowed

• If it’s roughly equal, point is visible from light

Bump Map Pixel Shader Pseudo Code
// NV_register_combiner pseudo code for bump mapping

texture0: color map (alpha = shininess map)

texture1: bump map

texture2: Phong specular map

texture3: shadow map

primary: light direction (L)

secondary: half angle vector (H)

// diffuse lighting = N.L

reg0.rgb = primary . texture1

// calculate shadow factor

reg1.alpha = texture3*(1.0 - factor) + factor;
// diffuse * color map
reg0.rgb = reg0 * texture0

Bump Map Pixel Shader Pseudo Code
// specular * shininess
reg0.alpha = texture2 * texture0.alpha

// shadowing
// diffuse*shadow_factor + specular*shadow
reg0.rgb = reg0*reg1.alpha + reg0.alpha*texture3

// fog
reg0.rgb = interp(reg0, fog_color, fog_factor);

// NV_texture_shader psuedo code
texture_2D();
texture_2D();
dot_product_texture_1D(tex1); // computes (N.H)^p
texture_2D();

Texture–Color Map

Texture–Shininess Map

Texture–Normal (Bump) Map

Final Result

Future Work
•Fur dynamics

• Animate shell geometry independently
from model based on physical simulation

•Ray marching
• Blend layers inside pixel shader
• Produce illusion of depth without shells
• Reduces frame buffer blending

•Geometry-based fur
• Antialiasing and shadowing are hard

Summary
•Programmable Vertex and Pixel shaders allow
you to control the hardware

•Real-time and offline production rendering
are converging

•Programmable graphics hardware acceleration
is applicable not only to games, but 2D imaging,
video processing and user interfaces…

•Next generation hardware will be faster, and
even more programmable

•Start learning this stuff now!

Demo Credits
•Curtis Beeson, Joe Demers—Engine Code
•Daniel Hornick—Modelling and Texturing
•Jeff Bell—Character Animation
•Ken Kurita-Ditz—Sound Design
•Simon Green—Additional Code and Shaders
•Mark Daly—Producer

References
•J. Kajiya and T. Kay, Rendering fur with three
dimensional textures, SIGGRAPH Proceedings,
pp. 271–280, 1989

•Jerome Lengyel, Emil Praun, Adam Finkelstein, Hugues
Hoppe, Real-Time Fur over Arbitrary Surfaces, ACM
2001 Symposium on Interactive 3D Graphics

http://research.microsoft.com/~jedl/

http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs

Roadmap
Room J

Thur., 5:00pm
Room J

Thur., 5:00pm

Room J1
Fri., 5:00pm
Room J1

Fri., 5:00pm

514 OpenGL: Performance
and Optimization

FF018 Graphics and Imaging

Who to Contact
Simon Green
NVIDIA Demo Engineer
sgreen@nvidia.com

Sergio Mello
3D Graphics Technology Manager
sergio@apple.com

http://developer.apple.com/wwdc2002/urls.html

Q&A

Sergio Mello
3D Graphics Technology Manager
 Worldwide Developer Relations

sergio@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

